Fibertex® E-Flow

Fibertex has launched a new patent pending high-performance filter media, that offers a sustainable and energy-efficient filtration solution for the HVAC segment.

HVAC systems - which control the temperature, humidity and purity of air - are designed to provide thermal comfort and pleasant indoor air quality. Around 20% of the world's energy consumption is from HVAC systems in buildings and with the increasing focus on environmental protection, as well as stricter legislation and increasing energy prices, there is a critical requirement for energy-saving HVAC systems.

A challenge of filtration systems is that during operation of the HVAC system, particles from the air settles in the filter and over time, these particles create a filter cake that blocks the pores, causing an increase in pressure drop. As the pressure drop rises, greater energy is required to push air efficiently through the filter.

The Fibertex solution

Fibertex[®] E-Flow, which is based on a fully synthetic nonwoven pleatable structure, is manufactured in the company's own state-of-the-art nonwoven and nano production facilities. The advanced Pleatex structure ensures a mechanical filtration with a high dust holding capacity and a low pressure drop, securing significant energy savings compared with other solutions in the HVAC market. In fact the highest Eurovent 4/21 rating A+ in energy efficiency is achievable.

Value proposition - how we add value to your business

Energy consumption can be reduced by approximately 67% when using Fibertex[®] E-Flow filter media, rather than a traditional glass fibre media with the same efficiency rating and the same filter size. The Fibertex[®] E-Flow material is carefully constructed to control the deposit of dust particles, which prevents a rapid pressure drop. Alternatively, it is possible to reduce the amount of filter media in the final filter and achieve the same performance as glass media.

Dust holding capacity test in Fibertex laboratory

The filter test data is measured on fully discharged media.

Fibertex materials offer up to 50% longer filter life time - even with a reduced amount of filter media, compared to conventional glass media. These results are due to the advanced Pleatex structure with a high dust holding capacity.

Product specification

Characteristic	Method	Unit	Fibertex® E-Flow Pleatex 100S35NP0	Glass fibre F7
Thickness @ 0.5 kPa	EN ISO 9073-2	mm	0.6	0.5
Air permeability @ 200 Pa	EN 9237	l/m²/s	900	1100
Pressure drop @ 5.33 cm/s	EN 16890	Ра	11	9
Dust holding capacity @ 300 Pa	EN 16890	g/m²	80	38
Filter class ePM1 @ 5.33 cm/s	EN 16890	%	60	50

