FIBERTEX NONWOVENS CONSTRUCTION

Produktübersicht

Fibertex Geotextilien

Blatt Nr. 400.61 Dato: Juli 20

Fibertex Geotextilien			F-10	F-20	F-22 2.0	F-25	F-2B Drain	F-30	F-32	F-35	F-38	F-46	F-40	F-50	F-59	F-200M	F-300M	F-400M	F-500M	F-600M	F-800M	F-1000M	F-1200M
Physikalische Eigenschaften																							
Flächengewicht (Masse)	EN ISO 9864	g/m²	80	100	120	130	130	150	175	200	230	255	260	300	370	200	300	400	500	600	800	1000	1200
Dicke bei 2 kPa	EN ISO 9863-1	mm	0,5	0,5	0,7	0,7	0,7	0,8	0,8	1,0	1,2	1,2	1,2	1,6	1,6	2,0	2,5	3,2	3,5	4,5	6,0	7,0	7,0
Mechanische Eigenschaften																							
CBR-Prüfung	EN ISO 12236	N	950	1100	1700	1800	1800	2200	2600	3000	3400	3500	3800	4500	5100	2600	3900	5200	6500	7800	10400	13000	15000
Klassifizierung nach CBR	EN ISO 12236		1	2	2	2	2	3	3	3	3	3	4	5	5	3	5	5	5	5	5	5	5
Deformation	EN ISO 12236	%	50	50	50	50	50	50	50	50	50	50	50	50	50	60	60	60	60	65	65	70	75
Streifenzugprüfung Längs	EN ISO 10319	kN/m	5,9	6,8	10,3	11,0	11,0	12,5	15,0	17,0	20,0	21,2	21,0	25,0	30,0	16,5	25,0	30,0	38,0	49,5	58,5	56,0	65,0
Streifenzugprüfung Quer	EN ISO 10319	kN/m	5,4	6,6	9,8	11,0	11,0	12,5	15,0	17,0	20,0	23,4	22,0	25,0	30,0	16,5	25,0	36,0	45,0	49,5	73,5	90,0	100,0
Bruchdehnung	EN ISO 10319	%	40/50	35/45	35/45	40/50	40/50	40/50	40/50	50/60	50/60	56/56	40/50	50/60	50/55	60/70	60/70	75/75	75/75	75/75	80/80	85/70	85/65
Dyn.Kegelfallversuch	EN ISO 13433	mm	>40	35	30	32	32	30	24	20	17	17	20	15	10	20	16	10	8	5	0	0	0
Hydraulische Eigenschaften																							
Wasserdurchlässigkeit b.50mmWH	EN ISO 11058	m/sec	0,10	0,09	0,08	0,07	0,07	0,05	0,04	0,04	0,04	0,03	0,04	0,03	0,02	0,08	0,05	0,05	0,03	0,03	0,03	0,02	0,02
Permitivität b.50mmWH	EN ISO 11058	sec -1	2,0	1,8	1,6	1,4	1,4	1,0	0,8	0,8	0,8	0,6	0,8	0,6	0,4	1,6	1,0	1,0	0,6	0,6	0,6	0,4	0,3
Durchlaufmenge b.50mmWH	EN ISO 11058	l/sec/m²	100	90	80	70	70	50	40	40	40	30	40	30	20	80	50	50	30	30	30	20	15
Geschwind.Index b.100mmWH	EN ISO 11058	m/sec	0,16	0,14	0,13	0,12	0,12	0,08	0,07	0,07	0,06	0,05	0,07	0,05	0,03	0,13	0,07	0,07	0,06	0,05	0,048	0,032	0,024
Durchlaufmenge b.100 mmWH	EN ISO 11058	l/sec/m²	160	140	130	120	120	80	70	70	60	50	70	50	30	130	70	70	60	50	48	32	24
Transmissivität	EN ISO 12958	10 ⁻⁶ m²/sec	0,1	0,3	0,6	0,6	0,6	1	1	1	2	1	1	2	2	4	4	3	4	8	10	10	12
Wasserableitvermögen	EN ISO 12958	I/h/m	0,5	1	2	2	2	3	3	4	5	4	4	5	6	13	15	12	15	30	36	36	43
Öffnungsweite O _{90%}	EN ISO 12956	micron	100	100	90	70	70	85	85	70	65	70	70	65	70	100	70	80	65	70	80	70	60
Standard Rollen																							
Breite(n)		m	2/4/5	2/4/5	1/2/4/5	2/4/5	1/2	2/2,5/4/5	4/5	4/5	4/5	4/5	2/4/5	4/5	5	4/5	4/5	5	5	5,5	5,5	5,5	5,5
Länge		m	100	100	50 / 100	100	50 / 100	100	100	100	100	100	100	100	100	100	100	100	100	100	50	50	50
Rollendurchmesser bei max Länge		cm	26	26	28	28	28	32	33	35	35	35	36	42	34	48	60	60	72	73	58	69	72
Rollengewicht bei max Standard Dimension		kg	40	50	60	65	65	75	88	100	115	128	130	150	185	100	150	200	250	330	220	275	330

Die genannten technischen Daten sind Mittelwerte laufender Produktion. Techn. Änderungen stehen jederzeit unter ausdrücklichem Vorbehalt.

Fibertex-Geotextilien

Fibertex Geotextilien ermöglichen im Hoch- und Tiefbau eine Vielfalt von Konstruktionslösungen für die Funktionen: Trennen, Filtern, Drainage, Stabilisieren, Verstärken und Schutz. Fibertex Geotextilien werden in Übereinstimmung mit der EN 12224 aus Polyproylen-Fasern hergestellt. Die Festigkeit der Fibertex-Geotextilien wird durch die Vernadelung erreicht, daraus resultiert eine starke und zugleich elastische Verbdinung der einzelnen Fasern. Durch spezielle Fertingungstechnik werden die Fibertex-Geotextilien zusätzlich komprimiert. Ausgenommen hiervon sind die M-Typen, diese sind ausschließlich mechanisch verfestigt.

Qualitätskontrolle

Die Fibertex Produktionskontrolle wurde mit dem CE-Kennzeichen Attestion of Conformity 2+ für alle Geotextilien versehen. CE 1071-CPR-1846. Fibertex Norwovens A/S ist gemäss Quality Management System EN ISO 9001 sowie Environmental Management System EN ISO 14001 zertifiziert.

Ausschreibungstext (Beispie

Geotextil (Viles), Werkstoff PP, vernadelt und komprimiert. Mindestflächengewicht 250 gr/m² GRK Klasse 4 CBR X-Wert nach EN ISO 12236 mind. 3125 N Streifenzupprüf. EN ISO 10319 längslquer mind. kN/m 18/18 Nachweis ISO 9001 und ISO 14001, CE-Kennzeichen Fabrikat Fibertex F-40 od.gleich.

Fibertex Nonwovens A/S Verkaufsbüro DE/AT/CH

Kölner Str. 101

D-57368 Lennestadt

Tel.: +49 (0) 2721 71 55 49 Fax.: +49 (0) 2721 71 55 51

email.: sales.de@fibertex.com

